Calculation of Homology Group of Simplicial Complexes

Lawton Adu-Ansah
Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Abstract
Dwelling on the geometric interpretation of the homology groups of a simplicial complexes the thrust is the geometric meaning of the connecting homomorphism. I will briefly talk about the geometric interpretation of the homology groups of a simplicial complexes before talking about the main thrust. Let K be a simplicial complex and also let L be a subcomplex of a simplicial complex K. Then we say that $C_\ast (L; G)$ is a subcomplex of the chain complex $C_\ast (K; G)$. Hence the quotient complex is defined $C_\ast (K, L; G) = C_\ast (K; G) / C_\ast (L; G)$.

Keywords:
Homology class, connecting homomorphism, relative homology group, relative cycle, simplicial complexes, boundary homomorphism, oriented simplexes.

Preliminaries:
The homology group of this chain complex $C_\ast (K, L; G)$ will be denoted by $H_k (K, L; G)$. We can obtain a long exact sequence of homology group from the exact sequence of chain complexes, that is, $0 \rightarrow C_\ast (L; G) \xrightarrow{i_\ast} C_\ast (K; G) \xrightarrow{j_\ast} C_\ast (K, L; G) \rightarrow 0$ which produces $\ldots \rightarrow H_{k+1} (K, L; G) \xrightarrow{\delta_{k+1}} H_k (L; G) \xrightarrow{i_{*k}} H_k (K; G) \xrightarrow{j_{*k}} H_k (K, L; G) \xrightarrow{\delta_k} H_{k-1} (L; G) \rightarrow \ldots$ and this is called an exact sequence of the pair (K, L) and also the group $H_k (K, L; G)$ are called relative homology groups or homology groups of the pair (K, L). Let the chain \tilde{Y}_k from $C_k (K, L; G)$ be a coset of
the group $C_k(K; G)$ relative to the subgroup $i_kC_k(L; G) \simeq C_k(L; G)$. We can show that in the coset \bar{Y}_k, there exists a unique representative, the chain $*$ from $C_k(K; G)$ which includes only these oriented simplexes with nonzero coefficients of the complex K that are not oriented simplexes of the subcomplex L. It follows that the boundary homomorphism $\delta_k : C_k(K, L; G) \rightarrow C_{k-1}(K, L; G)$ transforms the chain \bar{Y}_k into a chain \bar{Y}_{k-1} which is the coset of the group $C_{k-1}(K; G)$ relative to the subgroup $i_{k-1}C_{k-1}(L; G) \simeq C_{k-1}(L; G)$ with the representative $\delta_kY_k \in C_{k-1}(K; G)$.

Main Thrust

Now the main thrust which talks about the geometric meaning of the connecting homomorphism $\delta_k : H_k(K, L; G) \rightarrow H_{k-1}(L; G)$. Let $h_k \in H_k(K, L; G)$ be a homology class of the relative cycle $Z_k \in \tilde{C}_k$. We want to show that Z_k is a chain in $C_*(K; G)$ and calculate its boundary δ_kZ_k in it. We know from relative cycle that the chain in δ_kZ_k will include nonzero coefficient only oriented simplexes from L. Therefore δ_kZ_k is a chain $C_*(L; G)$. Hence δ_kZ_k is a cycle whose homology class $h_{k-1} \in H_{k-1}(L; G)$ does not depend on the choice of the representative δ_k of the class \tilde{h}_k. Therefore the general structure of the connecting homomorphism $\delta_k\tilde{h}_k=h_{k-1}$. Now let's take an example. Let U, V, W, X be simplexes of a rectangle of a simplicial complex K.

Thus $(U, V), (V, W), (W, X), (X, U), (V, X), (U, V, X), (V, W, X)$. And let its subcomplex L consist of the sample simplexes except $(V, W), (U, V, X), (V, W, X)$. Thus $|K|$ is a rectangle (with the interior) and $|L|$ its boundary. So from this, the chain $Y_2 \in C_2(K, Z), Y_2 = [U, V, X] + [V, W, X]$ is a relative cycle of a pair (K, L). The boundary $\delta_2Y_2 = [U, V] + [V, W] + [W, X] + [X, U]$ includes with nonzero coefficient only oriented simplexes from L. Also the chain $Y_1 [V,
X] from $C_1(K; Z)$ is simultaneously a relative cycle and a relative boundary because it can be obtained from $\Upsilon_2 [U, V, X] = [V, X] + [X, U] + [U, V]$. By discarding the addends $[X, U]$ and $[U, V]$ which are oriented simplexes from the subcomplex L. Then it proves that the relative cycle Υ_2 determines the generator of the group $H_2(K, L; Z) \cong Z$. Hence the connecting homomorphism $\delta_2: H_2(K, L; Z) \to H_1(L; Z)$ associates this generator with an element of the group $H_1(L; Z)$ which consists of one cycle $\delta_2 \Upsilon_2$.

Concluding Remarks

I will conclude by saying that from the above example, it proves that a simplicial complex K can be formed from a relative cycle and a relative boundary of a subcomplex L. So by discarding the addends of the oriented simplexes from the subcomplex L, the relative cycle determines the generator of the homology group.

Reference

1. Obeng Denteh, W., (2018) Lecture Notes on Algebraic Topology, Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana